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Abstract- The Multi-spectral Thermal Imager (MTI) is a high-
performance remote-sensing satellite designed, owned and
operated by the U.S. Department of Energy, with a dual mission
in environmental studies and in nonproliferation.  It has
enhanced spatial and radiometric resolutions and state-of-the-
art calibration capabilities.  This instrumental development puts
a new burden on retrieval algorithm developers to pass this
accuracy on to the inferred geophysical parameters.  In
particular, the atmospheric correction scheme assumes the
intervening atmosphere will be modeled as a plane-parallel
horizontally-homogeneous medium.  A single dense-enough
cloud in view of the ground target can easily offset reality from
the calculations, hence the need for a reliable cloud-masking
algorithm.  Pixel-scale cloud detection relies on the simple facts
that clouds are generally whiter, brighter, and colder than the
ground below; spatially, dense clouds are generally large on
some scale.  This is a good basis for searching multispectral
datacubes for cloud signatures.  However, the resulting cloud
mask can be very sensitive to the choice of thresholds in
whiteness, brightness, temperature, and connectivity.  We have
used a genetic algorithm trained on  (MODIS Airborne
Simulator-based) simulated MTI data to design a cloud-mask.
Its performance is compared quantitatively to hand-drawn
training data and to the EOS/Terra MODIS cloud mask.

I. INTRODUCTION

To take full advantage of the advanced spatial and
radiometric resolutions and calibration capabilities of the
Multi-spectral Thermal Imager (MTI) spacecraft [1],
atmospheric effects such as water vapor absorption and
aerosol scattering must be estimated and removed, and
clouds, which limit seeing of the ground, must be identified
and masked out from the images. Efforts are underway to
develop algorithms to fully automate this processing.
Qualitative results on have been reported in [2].

The MODIS Airborne Simulator (MAS) [3] is a high
resolution scanning spectrometer mounted on an aircraft.  Its
primary objective is to support the MODerate resolution
Imaging Spectroradiometer (MODIS) instrument on the
EOS/Terra spacecraft.  In the present work, spectrally
resampled MAS data from the Smoke, Clouds, And Radiation
- Brazil (SCAR-B) campaign is used as a proxy for MTI
spacecraft data.  We are interested in comparing several
techniques for automatically masking out clouds, and will
present results for a genetic algorithm approach (using a
software package called GENIE) which attempts to evolve a

cloud mask achieving automation, robustness, and good
classification performance.

II. METHOD COMPARISON

Observationally, clouds are usually much brighter than
their background, caused by refraction by the ice crystals and
water droplets that make up the cloud.  Clouds usually appear
white when viewed from above.  Due to the altitude of the
clouds, they are cold, and when viewed from above they
often appear much colder than their background.  The MTI
cloud mask algorithm uses these three basic to determine a
pixel-scale cloud mask. MTI has 15 multi-spectral imagery
(MSI) bands, including three visible bands and one near
infrared (NIR) band each with a spatial resolution of 5m, and
four NIR, two short-wave infrared (SWIR), two mid-wave
infrared (MWIR) and three long-wave thermal IR bands each
with a resolution of 20m [4]. The MTI cloud mask algorithm
uses bands “C” (0.65µm visible red), “E” (0.88µm near IR),
and “N” (10.5µm thermal IR), as follows.   A normalized
difference vegetation index (NDVI) of  “C” and “E” is used
to determine whiteness; the “C” band alone determines
brightness; and the thermal “N” band is used to determine a
relative temperature, using simple-thresholds on each of
these.  While these codes are mostly automated, the routines
require that the thresholds be determined by hand, with a
human user selecting representative cloudy pixels and
thresholds in a false-color RGB display. These routine are
currently part of MTI’s Level 2 data processing for regular
data retrievals.

Ackerman et al., [5] describe a physics-based cloud mask
algorithm developed for the MODIS instrument using MAS
data. Their automated routine masks pixels that contain
optically thick aerosol, clouds, or shadow.  It returns a 48 bit
cloud mask which includes a two bit classification for the
likelihood that a given pixel is cloudy.  This algorithm uses
radiance values in seventeen MAS bands, plus extensive
ancillary data including instrument viewing geometry, a
land/water/ice map, and an ecosystem map (land-cover
classification for each pixel). While automated and quite
robust, this algorithm is computationally expensive to run,
and so we are interested in exploring a machine learning
approach to attempt to evolve a simpler, but still automated
and robust, alternative algorithm.



GENIE [6] is an evolutionary computation software system
that rapidly evolves automatic feature extraction (AFE) tools
for multi-spectral imagery (MSI). GENIE is designed for a
range of imagery analysis tasks, and is built to process and
combine data from a wide variety of imagery sources (MSI,
hyper-spectral imagery (HSI), and electro-optical (EO)
imagery; using visible through  thermal IR wavelengths).

GENIE, described at length elsewhere [7], uses a genetic
algorithm to assemble image-processing tools (retrieval
algorithms) from a collection of spatial, spectral, and spatio-
spectral image processing operators, including edge detectors,
texture measures, band math operations, thresholds, and
morphological filters. A population of candidate tools is
generated, ranked according to a fitness metric measuring
their performance on some user-provided training data, and
fit members of the population permitted to reproduce. Each
candidate tool in the population generates a number of
intermediate feature planes, which are then combined using a
supervised classifier backend (currently a Fisher discriminant
and optimal threshold which minimizes the classification
error) to generate a binary result mask. This process cycles
until the population converges to a solution, or the user
decides to accept the current best solution, or decides to
change the training data.

III. EVOLVING A SPATIO-SPECTRAL CLOUD MASK

The MODIS cloud mask was run on part of a scene from
the MAS SCAR-B flight series (95-163, track 7). Training
data for GENIE was provided by manual mark-up of the
scene.  This is a straight-forward procedure for dense,
optically-thick clouds, and not every pixel needs to be
marked.  More careful mark-up techniques would be needed
to provide accurate training data for optically-thin clouds.
Test data was produced by two techniques: manual
classification of a complete MAS flight track, and the output
of the MODIS cloud-mask, which is taken to be a “gold
standard” for this problem.

A population of 50 candidate tools, each consisting of 20
primitive image processing steps, was evolved for 30
generations.  This evolution required approximately 11
minutes of wall-clock time running on a dual-processor
Linux/PC workstation. The best algorithm evolved produced
a cloud mask with an excellent match to the hand-drawn
training data.  Table I presents detection and false alarm rates
and the chromosome fitness score (GENIE’s internal measure
of fitness, a floating-point number scaled from 0 to 1000) for
the training case and several test cases, which we now
describe. The training scene comprises part (a contiguous
segment) of SCARB flight 95-163 track 7 with training data
(i.e., pixel-scale cloud classification) provided by manual
photo-interpretation.  Test 1 comprises all of track 7, again
with manually marked-up training data. Test 2 comprises all
of track 7 using the MODIS algorithm for training data.  Test

3 comprises all of flight 95-163 track 1 using a binary cloud
mask  produced by the MODIS algorithm for training data.
As an extreme test of robustness, we also tested the algorithm
on a  scene from the TARFOX campaign, and the result was
qualitatively very good, which we find encouraging for the
future use of this machine learning technique.

The evolved algorithm works as follows: (A) a linear
combination of MAS bands 1 (0.546µm visible green/yellow)
and 48 (13.24µm thermal IR), spectrally equivalent to
MODIS bands 4 and 33 (respectively), and close to MTI
bands “B” (0.55µm visible green/yellow) and “N”, are
linearly combined to form the first intermediate feature plane.
On inspection, this does a qualitatively good job of extracting
the interiors of optically-thick clouds.  (B) MAS band 2
(0.653µm visible red), equivalent to MODIS band 1 and
MTI band “C”, undergoes an amplitude band-pass filter
equivalent to a brightness test, which on inspection extracts
the edges of bright clouds. (C) Finally, MAS band 7
(0.865µm near IR), equivalent to MODIS band 2 and MTI
band “E”, undergoes local gradient spatial processing,
equivalent to the difference of the standard morphological
filtering operations of grayscale dilate and erode.  This acts to
extract the edges of clouds.  A linear combination of these
intermediate feature planes is then formed, with a vector of
coefficients (3.90,0.57,1.89) determined by the Fisher
discriminant using the training data.  The float-valued
grayscale answer plane is then  thresholded at a value 244.0,
to produce a binary cloud mask, part of which is shown (for
case Test 1, outside the training region) in Fig.1, right panel.

The noticeably higher false alarm rate in Test 2 deserves
further comment.  At its most pessimistic setting, the MODIS
cloud mask tends to over-estimate the occurrence of clouds,
relative to the human-specified simple-threshold algorithm.
This is particularly noticeable at the edges of the MAS scenes
(where geometric distortion of the image is quite visible, due
to the large field-of-view of the MAS).  The somewhat higher
false alarm rate in this test case is due to the GENIE-evolved
algorithm producing a result which does not show this effect,
and which is closer to the simple-threshold method.

IV. DISCUSSION AND CONCLUSIONS

The algorithm evolved by GENIE for this particular cloud
mask application uses a thermal infrared band, a near IR

TABLE I
EVOLVED CLOUD MASK PERFORMANCE

Detection False Alarm Fitness
Rate [%] Rate [%]

Training 99.8 0.38 997
Test 1 99.5 0.0 997
Test 2 93.2 14 895
Test 3 98.3 8.1 980



band, and visible green/yellow and red bands.  This is very
similar to the method used with the human-specified
simple−thresholds, though the band choices are not identical
(GENIE also chooses to use MAS band 1 in intermediate
feature plane A).

Fig.1 shows a portion of the cloud image from the SCAR-B
flight 95−163 track 7 data set.  The left panel shows the
clouds in the image using a near infrared band (similar to
MTI band “E”) from the MAS data (band 7).  The right panel
shows the cloud mask determined by GENIE. The MODIS
and human-specified simple−threshold cloud masks are very
similar to the GENIE result, and are not shown.  Importantly,
after training, the algorithm evolved by GENIE is fully
automated relative to the simple-threshold technique, and
executes in approximately 10 seconds on a complete MAS
flight track, compared to a few minutes for the MODIS
algorithm, using the same computer, though we should also
take into account GENIE’s initial training time (a few
minutes to mark up the scene and 11 minutes of runtime, in
this case).

We plan to continue the quantitative comparison of GENIE
and the MODIS and MTI cloud masks in future work.  Also,
we plan to use both GENIE and the MTI cloud mask on a
regular basis in detection products for the MTI spacecraft
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Fig. 1.  A part of MAS band 7 of the training scene (left) is compared with the GENIE cloud mask algorithm result (right).


